If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-6=0
a = 9; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·9·(-6)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{58}}{2*9}=\frac{-4-2\sqrt{58}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{58}}{2*9}=\frac{-4+2\sqrt{58}}{18} $
| 4m2+8m=3 | | x-0.85x=21.15-10 | | 8x+9=-x-3 | | -(1-3x)=4+x-(3-x) | | -3x+2=-4x-6 | | 2(x+3)-3(x+2)=7 | | 6x+4*4=40x/4 | | 280=-8(7-7x) | | 10×y+6=46 | | ?+8n=72 | | -14x-3=-6x+5 | | (8x+14)+(4x+32)=x | | 8x+4=3x-4+7 | | 4(×+3)=3x=3x+2+x | | 4(×+3)=3x | | x²-12x-7=0 | | 3x×x=80 | | 3n-4=19(n=2) | | 10x2+10x+25=0 | | 35x2+10x+25=0 | | 9-3n=-18 | | x²+12x-81=0 | | 5x-12=60-4x | | 4x²+73=9 | | 2x+(2x+2)+(2x+4)=18 | | 2(3x-1/2)=23 | | 4x³=756 | | 12=4n-6-7n | | 0.20)(10)=0.05x+0.40(10-x) | | -19=-18x | | G=-4-2x | | 5c=4=4c |